Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part I: Lignin

نویسندگان

  • Cliff E. Foster
  • Tina M. Martin
  • Markus Pauly
چکیده

The need for renewable, carbon neutral, and sustainable raw materials for industry and society has become one of the most pressing issues for the 21st century. This has rekindled interest in the use of plant products as industrial raw materials for the production of liquid fuels for transportation(1) and other products such as biocomposite materials(7). Plant biomass remains one of the greatest untapped reserves on the planet(4). It is mostly comprised of cell walls that are composed of energy rich polymers including cellulose, various hemicelluloses (matrix polysaccharides, and the polyphenol lignin(6) and thus sometimes termed lignocellulosics. However, plant cell walls have evolved to be recalcitrant to degradation as walls provide tensile strength to cells and the entire plants, ward off pathogens, and allow water to be transported throughout the plant; in the case of trees up to more the 100 m above ground level. Due to the various functions of walls, there is an immense structural diversity within the walls of different plant species and cell types within a single plant(4). Hence, depending of what crop species, crop variety, or plant tissue is used for a biorefinery, the processing steps for depolymerization by chemical/enzymatic processes and subsequent fermentation of the various sugars to liquid biofuels need to be adjusted and optimized. This fact underpins the need for a thorough characterization of plant biomass feedstocks. Here we describe a comprehensive analytical methodology that enables the determination of the composition of lignocellulosics and is amenable to a medium to high-throughput analysis. In this first part we focus on the analysis of the polyphenol lignin (Figure 1). The method starts of with preparing destarched cell wall material. The resulting lignocellulosics are then split up to determine its lignin content by acetylbromide solubilization(3), and its lignin composition in terms of its syringyl, guaiacyl- and p-hydroxyphenyl units(5). The protocol for analyzing the carbohydrates in lignocellulosic biomass including cellulose content and matrix polysaccharide composition is discussed in Part II(2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part II: Carbohydrates

The need for renewable, carbon neutral, and sustainable raw materials for industry and society has become one of the most pressing issues for the 21st century. This has rekindled interest in the use of plant products as industrial raw materials for the production of liquid fuels for transportation(2) and other products such as biocomposite materials(6). Plant biomass remains one of the greatest...

متن کامل

Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks.

Lignocellulosic feedstocks can be converted to biofuels, which can conceivably replace a large fraction of fossil fuels currently used for transformation. However, lignin, a prominent constituent of secondary cell walls, is an impediment to the conversion of cell walls to fuel: the recalcitrance problem. Biomass pretreatment for removing lignin is the most expensive step in the production of li...

متن کامل

Effects of lignin modification on wheat straw cell wall deconstruction by Phanerochaete chrysosporium

BACKGROUND A key focus in sustainable biofuel research is to develop cost-effective and energy-saving approaches to increase saccharification of lignocellulosic biomass. Numerous efforts have been made to identify critical issues in cellulose hydrolysis. Aerobic fungal species are an integral part of the carbon cycle, equip the hydrolytic enzyme consortium, and provide a gateway for understandi...

متن کامل

Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods

As interest in lignocellulosic biomass feedstocks for conversion into transportation fuels grows, the summative compositional analysis of biomass, or plant-derived material, becomes ever more important. The sulfuric acid hydrolysis of biomass has been used to measure lignin and structural carbohydrate content for more than 100 years. Researchers have applied these methods to measure the lignin ...

متن کامل

Perspective of Microbial Species Used in Lignocelluloses Bioconversion

Lignocellulosic wastes are abundant, renewable and inexpensive sources of energy. This wastes contains large amount of residual plant biomass which is non edible material obtained from plant cell walls. Biomass could be obtained from crop, domestic liquid fuel, municipal solid waste and agricultural residuals. In nature, cellulose, hemicellulose and lignin are major component of plant biomass t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2010